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INTRODUCTION 

The EN 1993 Part 1-1 (EC3-1-1) has introduced a new approach (called the “General Method”) to 

perform lateral-torsional buckling (LTB) assessment of beam-column structural components on the 

basis of elastic stability analysis. In the last years great research investigations went into the 

development of the method, see for instance [11,12] and also into the improvement of appropriate 

design software that is suitable to include the method and applicable for practical solutions [10]. 

The general objective of this paper is to review this issue from the point of view of the practice and 

contribute more effectively to understanding and resolving issues in the fields of practical 

application of the General Method. It is essentially significant to define the minimal analysis tools 

for the practice which are required for the accuracy of the method but on the other hand simple 

enough to make the modeling and calculation efficient. The paper briefly presents the theoretical 

background and the practical application of the elastic stability analysis of beam-columns that is 

necessary for the accurate evaluation of the General Method. The elastic stability analysis is 

verified by benchmark examples and also by shell finite element analysis. The application of the 

design method is demonstrated in the field of irregular structural members, especially web-tapered 

members and frames. The paper analyses the new theoretical results in the field of LTB of web-

tapered members that have led to prohibitive statements in some National Annex for EC3-1-1 

concerning the segment method in the analysis of these members. It is shown that a comprehensive 

design method that is based on an appropriate segmented model and the General Method is efficient 

as well as reliable for conceptual design and with some restrictions also for detailed design. 

1 GENERAL METHOD BY EC3-1-1  

According to the EC3-1-1 the global stability resistance of regular or irregular structural members 

or structures composed of these members may be estimated by the following design equation 

(providing that the effect of the design moment about minor axis may be neglected), see [1]: 
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where NEd is the design compressive force, My.Ed is the design bending moment, A and Wy are the 

cross-sectional properties, fyd=fy/M1 is the design strength and  is the appropriate reduction factor. 

Table 1 shows the design parameters of the design formulas that are related to the basic buckling 

modes such as flexural buckling, LTB and interaction of previous ones. The cr elastic critical load 

amplifier has an essential role in the design equation Eq.(1), which may be computed using global 

elastic stability analysis. 

2 GLOBAL ELASTIC STABILITY ANALYSIS   

The Ncr and Mcr elastic critical forces of regular structural members may be calculated by well 

known equations published in many papers and text books, for example see [2]. For the case of 

uniform compressive force and bending moment the interaction of flexural buckling and LTB may 

be estimated by the known formula (see [3]):   



 

  

 

 

Table 1. Analogy between the parameters of the buckling formulas 
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where Ncr.w is the elastic critical load for pure torsional buckling mode. For some irregular members 

the critical forces were derived using basic mechanical principals. For example Mohri at. al. 

examined the elastic critical moment of mono-symmetric I beam using theoretical investigation and 

numerical method (Abaqus software), see [4]. The considerable differences in the results were 

explained by the Wagner effect which was taken into consideration in the theoretical investigation 

but in the numerical method. The origin of their mistake was routed in the theoretical fact, that in 

the general beam-column finite element method the transverse load (as well as the shear force) is 

basically considered in the shear centre. Assuming this rule their “new” theoretical result and the 

numerical solution would give the same result. Andrade and Camotim examined elastic web-

tapered beam using Rayleight-Ritz method taken the pre-buckling effect into consideration, see [5] 

and [6]. Their new results can be accurately reproduced by the known general thin-walled beam-

column finite element method described in the next Section 3.   

3 GENERAL BEAM-COLUMN FINITE ELEMENT ANALYSIS 

Rajasekaran derived the matrix equilibrium equation of the general thin-walled beam-column finite 

element in explicit form, see [7]:   
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where 
s

K is the flexural and
g

K is the geometric stiffness matrices. The stiffness matrices may be 

derived from the equilibrium of the virtual works: 
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In Eq.(4) the left hand side expresses the work of the internal stresses on the appropriate virtual 

strains, while the right hand side expresses the work of the stress resultants on the appropriate 

virtual displacements. Furthermore,  is the normal stress and  is the corresponding virtual 

normal strain,  is the shear stress and  is the corresponding virtual shear strain at the arbitrary 

point on the counter of the thin-walled cross-section. The n at right hand side denotes the degrees of 

freedom of the element (n=14). The flexural stiffness matrix is expressed in terms of the 

geometrical properties of the element, while the geometric matrix is expressed in terms of the actual 

internal forces such as normal force, shear forces and bending moments. Furthermore, the geometric 

stiffness matrix depends on the Wagner coefficient which can be generally written as 
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where a is the distance of the counter point of the cross-section to the shear centre, t is the constant 

wall-thickness. For the FE model of a regular structural member the compatibility condition of 

warping in any node may be satisfied by the following condition: 
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where B denotes the bimoment in the node, i denotes the finite elements related to the node. The 

accuracy of the element was examined in general by many of papers, such as [8] and [9]. The elastic 

stability analysis (solving generalized eigenvalue problem) which is based on Eq.(3) provides the 

cr elastic critical load amplifier, which is the most important design parameter of the General 

Method.  

4 ELASTIC STABILITY ANALYSIS BY FEM 

Figs.1-4 shows some published benchmark models that were analyzed by the general beam-column 

finite element summarized in Section 3 implemented in the ConSteel software [10]. The numerical 

method in all cases has given exactly the same results as given by the theory.  

 

  

Fig. 1. Flexural-torsional buckling by Trahair [3] Fig. 2.  Interaction buckling by theory [3] 

  

Fig. 3. LTB of beams by Mohri [4] Fig. 4. LTB of tapered beams by Andrade [5]  

 

Andrade and Camotim examined the elastic critical load of the tapered cantilever shown in Fig.5 

using analytical and numerical methods, see [6]. The results are summarized in Table 2 including 

our examinations using the described general beam-column FEM (beam7) and triangular shell FEM 

(shell3). It can be seen that the greatest difference between the shell analysis is less than 3,5%. The 

differences between the shell and the general beam-column analysis are also close to each other, 

except the model of L=4.0 meters with top flange load where it is less than 7%.  

5 PARAMETRIC STUDY ON MEMBER RESISTANCE  

Fig.6 shows the model of a web-tapered structural member. The higher end of the member is 

subjected to M=My.el.Rd/2 bending moment and N=200 kN compressive force. 



 

  

  

Fig. 5. LTB of cantilever Fig. 6. Member model for parametric study 

Table 2. Critical transverse load for tapered cantilever (see Fig.5.) 

L [m] 

Qcr [kN] 

top flange centroid bottom flange 

FEA [12] 
ConSteel 

FEA [12] 
ConSteel 

FEA [12] 
ConSteel 

 beam7 shell3 beam7 shell3 beam7 shell3 

4 31.6 33.8 31.5 53.5 55.7 55.3 70.0 70.2 69.9 

6 15.2 15.4 14.7 20.3 20.2 19.8 23.7 23.5 22.9 

8 8.4 8.3 8.2 10.2 10.1 10.0 11.4 11.4 11.3 

 

In the parametric study we examined the cases that were given by 4, 6, and 8 meter lengths, 200-12 

and 260-16 flanges and 600 and 800 mm web heights. Table 3 contains the eight realistic cases for 

which the cr elastic critical load amplifier was computed by two numerical methods: (i) general 

beam-column FEM with n=16 uniform segments (beam7), see Fig.7; (ii) triangular shell FEM with 

25 mm size elements (shell3), see Fig.8.  The table contains the most important design parameters 

of the General Method. The last column shows the utilization of the global stability resistance. The 

greatest difference between the two FEMs was given by the model of L=8 meters with 260-16 

flanges and 900 mm web height:   
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Fig. 7. LTB by segmented FEA (beam7) Fig. 8. LTB by shell FEA (shell3) 

6 STUDY ON TAPERED FRAME  

Fig.9 shows a pin supported frame which is composed of web-tapered structural members. The 

model is loaded by 10 kN/m vertical uniformly distributed load. The span of the frame is 26,0 

meters, the flanges are 300-16. The web-height (measured by the distance of the flange centres) of 

the members is changing from 300 mm to 1000 mm. In the beam-column joints the beam flanges 

run over as web stiffeners of the columns. The model is supported laterally in the beam-to-beam 

and beam-to-column joints and in the half of the columns as well as in the quarter nodes of the 

beams. Table 3 contains the maximum vertical deflections and the cr elastic critical load amplifiers   



 

  

Table 3. Parametric study on member resistance (see Fig.6) 

model 

 FEM cr  ult,k op z LT  L  

[mm] 

B-tf  

[mm] 

H-tw 

[mm] 

4000 

 

200-12 

  

600-8 

beam7 3.26 

1.668 

0.715 0.715 0.633 0.931 

shell3 3.32 0.709 0.719 0.637 0.925 

6000 
beam7 1.60 1.021 0.528 0.457 1.287 

shell3 1.61 1.018 0.530 0.458 1.282 

4000 

900-10  

beam7 2.49  

1.758 

0.840 0.637 0.555 1.010 

shell3 2.60  0.822 0.648 0.566 0.991 

6000 
beam7 1.21 1.205 0.431 0.374 1.499 

shell3 1.29 1.167 0.450 0.390 1.439 

6000 

260-16 

600-8 

beam7 3.23 

1.728  

0.731 0.705 0.623 0.917 

shell3 3.30 0.724 0.710 0.628 0.910 

8000 
beam7 2.02 0.925 0.585 0.507 1.124 

shell3 2.07 0.914 0.591 0.513 1.111 

6000 

900-10 

beam7 2.46 

1.791 

0.850 0.629 0.548 1.008 

shell3 2.63 0.825 0.646 0.564 0.978 

8000 
beam7 1.51 1.089 0.490 0.424 1.301 

shell3 1.62 1.051 0.551 0.442 1.249 

 

 

 

Fig. 9. Web-tapered frame model 

 

  

Fig. 10. Buckling mode by FEM (beam7) Fig. 11. Buckling mode by FEM (shell3) 



 

  

computed by two numerical methods: (i) general beam-column FEM with n=16 uniform segments 

(beam7), see Fig.10; (ii) triangular shell FEM with 50 mm size elements (shell3), see Fig.11. The 

difference between the load amplifiers is less than 2%. The example illustrates the accuracy of the 

segment method which is based on the uniform general beam-column finite element.  

Table 4. Study on tapered frame (see Fig.9) 

FEA model maximum deflection [mm] critical load amplifier (cr) 

„beam7” 103 1.61 

„shell3” 93.4 1.58 

7 SUMMARY AND ACKNOWLEDGMENT 

The paper presented the practical application of the General Method which has been introduced by 

the EC3-1-1 primarily for the stability design of structural components having some geometrical, 

loading or supporting irregularity. The method is reviewed by the evaluation of web tapered 

members and frames. It was shown that for realistic geometry and loading excluding the influence 

of local and distortional buckling the application of segmented general beam-column finite element 

model is suitable for practical applications. The result components of the structural design – elastic 

critical values, slenderness, reduction factor and the final resistance utilization – were compared to 

values calculated by shell finite element model and the deviations were was found to be 

insignificant. On the other hand the use of shell finite element model makes the method very 

inefficient due to the large modeling costs while the segment model keeps the expected simplicity 

that can make the application of General Method attractive for the practice. 
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