fbpx

Alternative calculation of the effective cross-sectional properties –Consteel's solution

This overview delves into Consteel's solution, offering an alternative approach to calculating effective cross-sectional properties and reshaping conventional methodologies in structural analysis and design.

Determine the strength utilization of a double symmetric welded I cross-section with 384x4 web and 300x8 flanges, if the internal forces on the cross-section are NEd=500kN compressive force and My,Ed=100kNm bending moment. The material grade of the cross section is S235.

Calculation of cross-sectional properties

First, take the cross-section data (symmetric welded I-section), from which the Consteel software generates the EPS (and GSS) (see Online Manual/10.1.1 The EPS model) cross-section model (Fig. 1).

Fig. 1 Cross-section data model
Fig. 1 Cross-section data model

If the cross-section is class 4, the effective model is determined by the assumed normal stress distribution. According to EC3-1-1, the EPS model of a class 4 cross-section can be defined in two ways :

- method A: based on pure stress conditions,

- method B: based on complex stress condition.

In order to compare the results, the cross-section properties will be calculated by method A at first and then by method B.

Cross-sectional properties by method A

  • pure compression NEd  (Fig. 2): 

Aeff=4720mm2   

Fig. 2 Effective properties due to pure compressive force N
Fig. 2 Effective properties due to pure compressive force N
  • pure bending My,Ed  (Fig. 3): 

Weff,y,min=864080mm3

ez=14.5mm 

Fig. 3 Effective properties due to pure bending moment My
Fig. 3 Effective properties due to pure bending moment My

Cross-sectional properties by method B

Log in to view this content
Online service access and support options are based on subscription plans. Log in to view this content or contact our sales department to upgrade your subscription. If you haven’t tried Consteel yet, try for free and get Pro access to our learning materials for 30 days!

Обратно