fbpx

Introduction

When a beam, bent in a plane, is allowed to move and twist freely between its two support points, in addition to bending, sudden perpendicular displacement and twisting may occur: causing the beam to deviate out of its original plane. This phenomenon is illustrated in Figure 1, showing a single supported beam with I-section bent around the strong axis. As the bending moment in the vertical plane increases, reaching a critical value, the beam undergoes abrupt lateral movement and twisting between the supports. This phenomenon is called lateral torsional buckling (LTB), which is a loss of stability mode that can apply to both perfect beams and real beams.

Fig. 1  Lateral torsional buckling (LTB) mode of beams under bending
Fig. 1  Lateral torsional buckling (LTB) of beams under bending

The design of the beam against LTB is fully analogous to the design of a compressed column against flexural buckling. The analogy is illustrated in Table 1, where the corresponding parameters are shown that affect the two buckling resistances:

Flexural (column) bucklingLateral torsional buckling
design force ($N_{Ed}$)design moment ($M_{Ed}$)
critical force ($N_{cr}$)critical moment ($M_{cr}$)
column slenderness ($\frac{}{\lambda}$)beam slenderness ($\frac{}{\lambda}_{LT}$)
buckling reduction factor ($\chi$)buckling reduction factor ($\chi_{LT}$)
buckling resistance ($N_{b,Rd}$)buckling resistance ($M_{b,Rd}$)
Table 1: Analogy between flexural and LT buckling modes

The critical moment of the perfect beam is determined at the location of the maximum value of the My,Ed design bending moment diagram. For a doubly symmetrical I cross-section:

$$M_{cr}=C_1\frac{\pi^2EI_z}{(k_z⋅L)^2}\left[\frac{I_\omega }{I_z}+ \frac{(k_zL)^2GI_t}{\pi^2EI_z}\right] ^{0.5} $$

where kz is the coefficient of restraint about the weak axis of the cross-section, G is the shear modulus, and It and Iω are the pure (St. Venant) and warping torsional moments of inertia of the cross-section. The value of the factor C1 depends on the shape of the bending moment diagram and its value can be found in appropriate tables and manuals. For a constant moment diagram, C1=1.0. The formula for the other design parameters, in particular the buckling reduction factor $\chi_{LT}$, depends on the design standard considered.

Lateral torsional buckling resistance by EN1993-1-1  

The design of the beam against LTB (load capacity check) according to EC3-1-1 shall be carried out in the following steps:

gate

The evolution of compressed bar (column) design

One of the characteristic features of steel structures made of bars (e.g. lattice girders) is the compressed bar.  We speak of a compressed bar when the structural element, which usually has a straight axis, is loaded by a compressive force P applied centrally (Figure 1).

Fig. 1 Compressed bar model
Fig. 1 Compressed bar model

Figure 2 illustrates the evolution of compressed bar (column) design.  In the beginning (in the old days), master builders determined the load-bearing capacity of compressed columns of different materials and sizes on the basis of the experience accumulated over the centuries, passed down from master to apprentice. A significant change was brought about by the application of classical mathematical differential analysis to engineering. The Swiss mathematician and physicist Euler (1707-1783) solved the problem of the deflection of a compressed elastic line, which could be applied to the solution of the elastic compressed bar (Euler’s force). In the following centuries, engineers recognised that Euler’s force only gave an acceptable approximation to the real load capacity of a compressed bar in certain cases (mainly for large slender bars). Many solutions for the bearing capacity of a compressed bar were developed that were more advanced than the Euler formula, but it was not until the huge structural engineering boom following World War II that significant changes were made. Compression bar experiments were carried out in every major structural laboratory in the world, and a database of over two thousand experiments was compiled from the results. The load capacity of the pressure bar was given by a formula based on the database, using the method of mathematical statistics.

This methodology is still dominant today: ‚the dimensioning of the compressed bar has become a political issue for the steel construction profession…‘. Understanding the principle of compressed bar design is therefore essential for the structural engineer.

The right side of the Figure 2 also contains a hint for the future. At the level of scientific research, it is already present that the load capacity of a real compressed column can be determined by mathematical-mechanical simulation. Indeed, in the near future, databases that go beyond anything we know today can be created using supercomputers. On the basis of such a gigantic database, artificial intelligence could, at least in principle, supersede existing engineering knowledge and methodology. But the reality is that structural engineering is not one of the pull sectors (such as the defense or automotive industries), so this new shift in design theory is certainly a long way off.

Fig. 2  Developing of the column design methodology
Fig. 2  Developing of the column design methodology

In the following, the Euler force and the experimentally based standard design formula, which are of major importance to structural steel engineering today, are discussed in detail.

Buckling strength of the ideal columns: the Euler force

Assume that the hinged compressed column shown in the Figure 3 has the following properties:

Under the above conditions, perform the compressed column experiment using Consteel software: run the Linear Buckling Analysis (LBA) calculation. The result is illustrated in Figure 3.

gate

Did you know that you could use Consteel to Consider the shear stiffness of a steel deck as stabilization for steel members?

Download the example model and try it!

Download model

If you haven’t tried Consteel yet, request a trial for free!

Try Consteel for free
shearfield stiffness
shearfield stiffness
shearfield stiffness
shearfield stiffness

Consteel 14 is a powerful analysis and design software for structural engineers. Watch our video how to get started with Consteel.

Contents

gate

Click the button bellow to download and read the full article at page 187-195.

In this paper a numerical study is presented which examines a steel frame with two different finite element programs. Stability failure is more frequent in a lot of cases than strength failure hence it is important to focus on these failure modes: global, in-plane-, out-of-plane -, lateral-torsional- and local buckling. Three models were used with different elements such as shell elements and 7 DOF beam elements. 7 DOF beam elements were used in the first model, shell elements were used in the other two. The first of the shell models gave too much local buckling shapes therefore it was improved with local constraints and that is the third model where global buckling shapes can be examined. There are three different procedures to calculate the resistance: (i) the general method, (ii) the method of the reduction factors, and (iii) the simulation. The analysis results of the different programs and design methods were compared to each other and to the manual calculation based on the Eurocode 3 standards.

gate

The new versions of the EN 1993-1-1 (EC3-1-1) and the EN 1993-1-5 (EC3-1-5) standards have introduced the general method designing beam-column structures; see [1] and [2]. The design method requires 3D geometric model and finite element analysis. In a series of papers we present this general design approach. The parts of the series are the following:

Click the button bellow to download and read the full article.

gate

The EN 1993 Part 1-1 (EC3-1-1) has introduced a new approach (called the “General Method”) to perform lateral-torsional buckling (LTB) assessment of beam-column structural components on the basis of elastic stability analysis. In the last years great research investigations went into the development of the method, see for instance [11,12] and also into the improvement of appropriate design software that is suitable to include the method and applicable for practical solutions [10]. The general objective of this paper is to review this issue from the point of view of the practice and contribute more effectively to understanding and resolving issues in the fields of practical application of the General Method. It is essentially significant to define the minimal analysis tools for the practice which are required for the accuracy of the method but on the other hand simple enough to make the modeling and calculation efficient. The paper briefly presents the theoretical background and the practical application of the elastic stability analysis of beam-columns that is necessary for the accurate evaluation of the General Method. The elastic stability analysis is verified by benchmark examples and also by shell finite element analysis. The application of the design method is demonstrated in the field of irregular structural members, especially web-tapered members and frames. The paper analyses the new theoretical results in the field of LTB of webtapered members that have led to prohibitive statements in some National Annex for EC3-1-1 concerning the segment method in the analysis of these members. It is shown that a comprehensive design method that is based on an appropriate segmented model and the General Method is efficient as well as reliable for conceptual design and with some restrictions also for detailed design.

Click the button bellow to download and read the full article.

gate

Stability analysis and design have always played a key role in the process of verification of steel structures. The possible analysis methods and design procedures have a long history with plentiful literature providing various proposals for the engineers. This paper concentrates on the use of different types of eigenvalue analysis as a simple and powerful tool for stability design. Nowadays almost all the engineering software products have some kind of eigenvalue analysis options so these tools are easily available for the practicing engineers providing them a deeper look on the structural behavior. Various types of application possibilities are reviewed and new methods are proposed supporting the most up-to-date standard procedures of different levels from the isolated member design to the partial or global structural stability design. The suitable theoretical (both mathematical and mechanical) background is developed and the numerical procedure is implemented. The technique is applicable for a wide range of structural types and stability problems making the automatic effective length calculation possible in general without the use of any iterative process or tabulated values for certain cases. An application example is presented showing the comprehensiveness of the methods, and special efficiency indicators are presented in order to supply information about the adequacy of the applied design method.

Click the button below to download and read the full article.

gate