fbpx

The EN 1993 Part 1-1 (EC3-1-1) has introduced a new approach (called the “General Method”) to perform lateral-torsional buckling (LTB) assessment of beam-column structural components on the basis of elastic stability analysis. In the last years great research investigations went into the development of the method, see for instance [11,12] and also into the improvement of appropriate design software that is suitable to include the method and applicable for practical solutions [10]. The general objective of this paper is to review this issue from the point of view of the practice and contribute more effectively to understanding and resolving issues in the fields of practical application of the General Method. It is essentially significant to define the minimal analysis tools for the practice which are required for the accuracy of the method but on the other hand simple enough to make the modeling and calculation efficient. The paper briefly presents the theoretical background and the practical application of the elastic stability analysis of beam-columns that is necessary for the accurate evaluation of the General Method. The elastic stability analysis is verified by benchmark examples and also by shell finite element analysis. The application of the design method is demonstrated in the field of irregular structural members, especially web-tapered members and frames. The paper analyses the new theoretical results in the field of LTB of webtapered members that have led to prohibitive statements in some National Annex for EC3-1-1 concerning the segment method in the analysis of these members. It is shown that a comprehensive design method that is based on an appropriate segmented model and the General Method is efficient as well as reliable for conceptual design and with some restrictions also for detailed design.

Click the button bellow to download and read the full article.

gate

Stability analysis and design have always played a key role in the process of verification of steel structures. The possible analysis methods and design procedures have a long history with plentiful literature providing various proposals for the engineers. This paper concentrates on the use of different types of eigenvalue analysis as a simple and powerful tool for stability design. Nowadays almost all the engineering software products have some kind of eigenvalue analysis options so these tools are easily available for the practicing engineers providing them a deeper look on the structural behavior. Various types of application possibilities are reviewed and new methods are proposed supporting the most up-to-date standard procedures of different levels from the isolated member design to the partial or global structural stability design. The suitable theoretical (both mathematical and mechanical) background is developed and the numerical procedure is implemented. The technique is applicable for a wide range of structural types and stability problems making the automatic effective length calculation possible in general without the use of any iterative process or tabulated values for certain cases. An application example is presented showing the comprehensiveness of the methods, and special efficiency indicators are presented in order to supply information about the adequacy of the applied design method.

Click the button below to download and read the full article.

gate